First-principles study of structural, electronic and optical properties of BaF2 in its cubic, orthorhombic and hexagonal phases

نویسندگان

  • Huitian Jiang
  • Ravindra Pandey
  • Clovis Darrigan
  • Michel Rérat
چکیده

We present the results of a first-principles study on BaF2 in its stable (cubic) and high-pressure phases. A linear combination of atomic orbitals approach in the framework of density functional theory is employed for total energy calculations in cubic, orthorhombic and hexagonal phases of BaF2. A fitting of the energy surface to the equation of state yields the lattice constant and the bulk modulus of these phases at zero pressure which are in good agreement with the corresponding experimental values. Analysis of band structure determines the high-pressure phases to be direct-gap materials and no metallization of BaF2 is predicted to occur for pressures up to 50 GPa. Furthermore, several peaks observed in the spectroscopic experiments have been identified with interband transitions in the cubic BaF2. The calculated mean value of the refractive index is found to increase in going from the cubic to orthorhombic to hexagonal phases of BaF2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First-Principles Study of Structure, Electronic and Optical Properties of HgSe in Zinc Blende (B3) Phase

In this paper, the structural parameters, energy bands structure, density ofstates and charge density of HgSe in the Zincblende(B3) phase have been investigated.The calculations have been performed using the Pseudopotential method in theframework of density functional theory (DFT) by Quantum Espresso package. Theresults for the electronic density of states (DOS) show tha...

متن کامل

First-principles study of the electronic structure of PbF2 in the cubic, orthorhombic, and hexagonal phases

The results of electronic structure calculations for PbF2 in ambient and highpressure phases are reported here. We employ the linear combination of atomic orbital-density functional theory approximation using the CRYSTAL program package whose capabilities were expanded to include the so-called soft-core pseudopotentials with higher-order components (e.g. d, f, and g) of the angular momentum ter...

متن کامل

Investigation of optical and magnetic properties of UY2(Y=Ga,Ge) compositions

In this study, the optical and magnetic properties of compounds in hexagonal and orthorhombic phases are investigated. The calculations have been carried out in the framework of the functional density theory with various approximations such as local density approximation, Generalized gradient approximation with the pseudopotential and stationary load method, and using the quantum-espresso compu...

متن کامل

Optical determination of crystal phase in semiconductor nanocrystals

Optical, electronic and structural properties of nanocrystals fundamentally derive from crystal phase. This is especially important for polymorphic II-VI, III-V and I-III-VI2 semiconductor materials such as cadmium selenide, which exist as two stable phases, cubic and hexagonal, each with distinct properties. However, standard crystallographic characterization through diffraction yields ambiguo...

متن کامل

First-principles Study of Electronic and Dielectric Properties of Zro 2 and Hfo 2

Using density-functional theory with ultrasoft pseudopotentials, we previously investigated the structural and electronic properties of the low-pressure (cubic, tetragonal, and monoclinic) phases of ZrO 2 and HfO 2 , in order to elucidate phonon modes, Born effective charge tensors, and especially the lattice dielectric response in these phases. We now extend this previous work by carrying out ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003